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Abstract
Face recognition has become one of the most important modalities of biometrics in
recent years. It widely utilises deep learning computer vision tools and adopts large
collections of unconstrained face images of celebrities for training. Such choice of the
data is related to its public availability when existing document compliant face image
collections are hardly accessible due to security and privacy issues. Such inconsistency
between the training data and deploy scenario may lead to a leak in performance in
biometric systems, which are developed specifically for dealing with ID document
compliant images. To mitigate this problem, we propose to regularise the training of the
deep face recognition network with a specific sample mining strategy, which penalises the
samples by their estimated quality. In addition to several considered quality metrics in
recent work, we also expand our deep learning strategy to other sophisticated quality
estimation methods and perform experiments to better understand the nature of quality
sampling. Namely, we seek for the penalising manner (sampling character) that better
satisfies the purpose of adapting deep learning face recognition for images of ID and
travel documents. Extensive experiments demonstrate the efficiency of the approach for
ID document compliant face images.

1 | INTRODUCTION

With the recent development of deep learning tools, face images
have become one of the most important biometric sources for
various security authentication applications. The general
approach of face recognition is based on transforming the ac-
quired face image to its low‐dimensional representation in some
deep feature domain. This domain is learnt to be highly
discriminative for identities. However, it straightforwardly in-
herits the properties of the training data. Then, the characteristic
face representation is encoded into the biometric facial template.
The distinguishing of face images by their identities is

performed by the comparison of their respective biometric
templates in a number of scenarios. For instance, a template
may be used for one‐to‐one verification, when the comparison
of testing and the trusted genuine samples is performed. This
situation takes place when the secured template is embedded in
the ID document, following the match‐on‐document scenario

[1, 2]. Also, it may be enroled into a secured database, or
searched within the collection of enroled templates, following
the 1‐N identification.
The properties of the deep face features domain allow

utilising computationally simple similarity metrics (e.g.
Euclidean distance and scalar product) for templates compar-
ison, which significantly simplify the process of authentication
within the large database of enroled identities.
The particular strategy of learning the features of a template

may be different. The most popular techniques are based on
learning the contrast between match/non‐match identity pairs
[3] or on the multiclass (identities) classification [4–7]. The deep
network, which acts as a backbone of modern face recognition
systems, usually has a complex architecture of stacked con-
volutional layers. The training data is usually collected and
labelled in an automatic or semiautomatic manner (due to large
size requirement) and based on public face images of celeb-
rities [8, 9].
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The application of face recognition tools set to the docu-
ment security systems possesses a number of specificities. The
approved forms of identification documents (i.e. biometric
passports and national ID cards) in many countries allow the
enrolment of only the frontal face images, which are compliant
to International Civil Aviation Organization (ICAO) standards
[10, 11].
In contradistinction to unconstrained face recognition

methods (e.g. embedded in surveillance systems), which are
focussed to cover variations of acquisition parameters (illu-
mination, pose, occlusion, and facial expressions), document
security solutions deal with more regular conditions especially
with a recent tendency to control the procedure of biometric
enrolment [12]. Nowadays, this process even usually includes
the face quality estimation stage, which rejects samples when
their estimated quality score is below a certain threshold.
At the same time, the collections of ICAO compliant

enroled images, which are usually stored by national in-
stitutions, are hardly available for research and development
due to privacy issues. As an example, the European GDPR
(General Data Protection Regulation) categorises face images
as sensitive personal data, which results in many constraints for
their collection and distribution [13]. Following this trend,
many of the face datasets (even public wild datasets of celeb-
rities) were recently withdrawn and are usually available only in
the form of redistribution.
That is why there is a challenge for face recognition in

document security when for efficient training of the face
recognition algorithms, one requires large ICAO compliant
face image datasets, which remain private, and the publicly
available ones are of insufficient size. In this situation, the most
effective approach is to follow training on available wild
datasets and then apply some optional measures (like fine‐
tuning) for achieving better performance in the deploy sce-
nario [14].
In this work, we extend our recent research [15], which was

presented at the BIOSIG2021 conference and continue
investigation towards understanding the properties of quality
sampling in deep learning face recognition. Our approach is
designed to reduce the impact of image wildness, which is the
common characteristic property of training data of face
recognition, for adapting the deep network to the document
security scenario.
We propose to emphasise the facial features which are

more characteristic for ID document compliant images by
designing a sophisticated sample mining strategy, which regu-
larises the training process. The developed strategy penalises
the samples by their quality score (estimated by several met-
rics). Our approach allows learning a facial biometric template,
which better suits document security applications.
Along with the above improvements, we also revisit the

process of benchmarking, which is based on stressing the
trained networks in different scenarios and cross‐comparison
of the results.
This problem becomes extremely important from the

perspective of face quality estimation, which has become a

separate area of face recognition with its specific metrics and
benchmarks [16].

2 | RELATED WORK

2.1 | Face recognition

Most recent advancements in the field of Face Recognition are
related to manipulation of the loss function. Generally, the
intended outcome of this manipulation is the increase of the
discriminative power of the learnt feature embeddings. With
this in mind, most current approaches use a classification‐
based approach, transforming the problem of face recogni-
tion into a multi‐class classification problem. Based on the
softmax loss function, some works achieved increased inter‐
class dispersion and intra‐class compactness by introducing
margin parameters (SphereFace, CosFace, and ArcFace).
However, these methods do not account for the variability,
hardness, or properties of each sample, and as such, further
improvements can be made.
With this in mind, some works focussed on introducing

hard sample mining strategies. For example, NPCFace [17]
distinguishes between hard‐positive and hard‐negative samples,
showing that for large datasets, hard‐positives for one identity
usually are hard‐negatives for another. The authors introduce a
binary mask to identify if a sample is hard or not, which im-
pacts the formulation of the negative logit. For the positive
logit, they follow the ArcFace formulation with a margin
parameter that is also influenced by the hardness of the sample.
Although hard sample mining methods improve results in

wild scenarios where the system's performance on hard sam-
ples is crucial, we propose that for the document security
application scenario, focussing on better quality samples is
indeed better suited. Following this approach, a recent work
named MagFace [18] uses the quality of samples to regularise
the training process by increasing the importance of higher
quality samples. A loss function formulation inspired by Arc-
Face is followed and the margin parameter is designed to vary
with a measure of sample quality previously mentioned. The
MagFace approach is conceptually similar to ours and tends to
control the distribution of deep features during the training
process. However, the approach is limited to utilising the
magnitude of deep features as an implicit indication of sample
quality.
Regarding document security‐specific face recognition

investigation, there exist some works namely DocFace [14]. In
this work, the authors present a method for matching live
portraits to Identification Document (ID) photos. This was
done by using a pair of sibling networks and fine‐tuning them
on a private ID‐Selfie dataset. DocFace achieves better per-
formance over more general face recognition approaches;
however, the dataset used in benchmarking is private, and that
is why no comparisons can be made. Some improvements on
the ID‐Selfie dataset and the loss function were introduced in
DocFace+ [19], resulting in better performance.
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2.2 | Face image quality assessment

As mentioned above, introducing sample quality as additional
information during the training process can lead to improved
results. A survey was done on face image quality assessment
(FIQA) by Schlett et al. [20]. Some quality indicators can be
used related to ICAO compliance: For example, a measure of
the Blur in an image, although not a sufficient indicator of
face image quality, can already help classify an image as low
quality if the image is too blurry. A measure of image blur
can be extracted by convolving the image with a Laplacian
filter and then calculating the variance of the result [21]. The
BRISQUE method is an image quality assessment tool that,
through the use of statistics, can quantify the ‘naturalness’
and quality of any image. The generic quality estimation may
be done also with the use of image characteristics (like
saturation).
Several recent works utilised face‐specific attributes to

extract quality characteristics.
For example, Zhang et al. focussed their research on face

illumination [22]. The authors used a Convolutional Neural
Network (CNN), which is trained on the manually labelled
FIIQD dataset in order to return a measure of the quality of
face illumination.
The face pose is also a promising quality metric since the

face should be frontal according to ICAO requirements. Ruiz
et al. [23] use a CNN to estimate the three angles that describe
the face pose (yaw, pitch and roll).
The facial geometry, which is usually estimated by the

detection of specific landmarks can be utilised to extract the
quality [24].
FaceQnet [25] is a face image quality assessment CNN‐

based method. To train the CNN, the authors used a third
party framework to generate ICAO compliance scores that
were then used as ground‐truth values. They demonstrated that
there is a high correlation between the FaceQnet scores and
face biometric verification performance for several off‐the‐
shelf face recognition systems.
The above‐mentioned methods are heavily influenced by

the human perception of quality and are related to ICAO
standards, but not directly related to a performance increase.
As such, some recent methods try to detach the image quality
definition from human perception.
SER‐FIQ [26] is a face image quality estimation method

reliant on applying dropout during the training of a network.
With this method of training, the quality of a sample is
defined regarding the robustness of its embeddings in
different sub‐networks: for a given sample, the closer the
outputs are for different sub‐networks, the higher the quality
of the sample.
In Probabilistic Face Embedding (PFE) [27], Shi and Jain

show that poor image quality impacts the similarity scores both
of genuine and impostor pairs. It concluded that the degra-
dation of an image leads to a higher probability of false reject
or false acceptance of these pairs. So, unlike the common
deterministic face embedding, the authors propose to encode a
measure of uncertainty in the embedding with two different

output vectors: one representing the Gaussian mean and the
other for the Gaussian variance.
PCNet [28] introduced a scheme for learning predictive

confidence to reduce the proportion of errors caused by im-
ages with bad quality. The training of PCNet is performed with
the use of pairwise verification scores, which is then disen-
tangled to single images.
Like the previously mentioned methods, SDD‐FIQA [29]

bases its quality assessment on the recognition performance
for a given sample. This is done by mapping the inter‐class and
intra‐class similarity scores to quality pseudo‐labels through the
use of a distribution distance metric. The quality values are
then used to train a CNN to predict quality scores.
Boutros et al. [30] proposed to learn the face image quality

estimation by predicting its relative classifiability. Their CR‐
FIQA method is trained by optimising the feature represen-
tation of a sample in angular space with respect to its class
centre and the nearest negative class centre.
However, many deep learning methods are usually criti-

cised by the weak explainability of the estimated quality since
they usually learn it via the performance of the face recognition
system. That is why, the resulting scores are hardly interpreted
from the perspective of standard ICAO requirements.
Fu et al. [31] investigated a number of the above face

quality metrics in a combination with general image quality
measures and handcrafted quality features. In our work, we
draw several similar conclusions specifically to the face image
quality metrics (namely the correlation of the metrics). How-
ever, we are mainly focussed on the understanding of the
impact of quality sampling on the deep network training
process, rather than evaluating the improvement of face veri-
fication performance by rejecting low‐quality data.

3 | METHODOLOGY

Deep learning classification approaches usually utilise the
softmax loss function, which now serves as a basis for most of
the recently developed loss functions in the field of face
recognition. It is usually formulated as follows:

Lsoftmax ¼
1
N

X

i

− log

0

@ e fyi
PC
j e

fyj

1

A ð1Þ

where C is the number of classes in the classification problem,
yi is the index of the class of the i − th sample, N is the
number of samples in a batch and fyj is the yj − th component
of the final layer's logits f. If l2 normalisation of the weights wj

and biometric feature set xi is performed, then fyj can be
represented as fyj ¼ wTj xi ¼ cos

�
θj
�
. The normalised features

are constrained on the hyper‐sphere in Rd space (where d is
the size of f ), which lead to the angular similarity metric be-
tween samples. By reformulating softmax with this normal-
isation and adding an angular margin parameter m to the
positive logit, we obtain the ArcFace loss:
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Larcface ¼
1
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3.1 | QualFace

Basing on the cooperative margin presented in NPCFace [17],
we introduce the concept of adaptive margin with regard to
image quality. Our approach, unlike others previously
mentioned, implies developing the sample mining strategy,
which enhances the impact of higher quality samples instead of
harder samples. In this case, deep feature distribution is char-
acterised by the concentration of the qualitative samples closer
to the class feature centre (see Figure 1). With this approach,
higher impact means higher loss value for samples with better
quality. This is done by increasing the margin parameter in the
ArcFace loss in an adaptive way, which results in the following
formulation:

Lq ¼
1
N

X

i
− log

0

@ es cosðθyiþmiÞ

es cosðθyiþmiÞ þ
P
j≠yie

s cos θj

1

A ð3Þ

where the adaptive margin parameter mi is defined as a
baseline value plus an added constant dependent on the quality
of the image:

mi ¼m0 þ
XQ

j
wjqijm1 ð4Þ

where m0 and m1 are hyper‐parameters and qij represents
the normalised j − th quality score value for the sample i. Q is
the total number of quality attributes and wj is the weight of
each score. Indeed, the m0 sets the baseline margin, when m1
defines the variation range of the quality score. Our strategy
implies a linear loss function modification; however, the vari-
ations of non‐linear effect may be achieved by explicit regu-
larisation of quality score distribution (see Section 4.7).
For travel document photos, we consider high‐quality

samples as samples that have high ICAO standards compli-
ance [10], for instance, images with frontal poses, clear back-
ground, frontal face lighting, no face occlusion, no facial
expressions, etc. In our work, we use a number of different
indicators of quality that are inspired by ICAO recommenda-
tions for portrait photographs: Blur [21], BRISQUE scores
[32], FaceQnet [25], Face Illumination quality (FIIQA) [22], a
Pose score [23], SER‐FIQ [26], Saturation, Eyes openness [24],
CR‐FIQA [30], and MagFace [18]. The pose scores are
calculated as the average of absolute values of the yaw, pitch
and roll angles. Saturation is computed as the distance between
the image saturation value and some manually chosen optimal
value. The quality score values are normalised to the [0, 1]
range prior to utilising in our strategy. MagFace quality mea-
sures signify the magnitude of deep feature embedding.

QualFace strengthens the supervision on higher quality
samples through the use of external quality indicators. The
following section will show the advantages of QualFace on
document security applications.

4 | EXPERIMENTS AND RESULTS

We have performed extensive training experiments with
QualFace and the baseline loss function and have estimated the
performance of the resulting models in the following way.
In our basic experiments with the QualFace approach, we

simplified the original training dataset. We used the subset of
public VGGFace2_train dataset [8], selecting classes with more
than 400 images per identity to employ the variance of the
quality metric within the class. The resulting dataset has a total
of 1.34 M images and 2842 identities.
Face detection and alignment to 299 � 299 dimensions

were performed with the use of RetinaFace method [33]. For
training, we use the custom alignment, which is based on 5
fiducial face landmarks and rigid transform operations for face
centring and vertical alignment (see Figure 2). Each image
channel is normalised by subtracting the mean of the training
dataset before the batch generation.

(a)

(b)

F I GURE 1 The spatial distribution of two high‐level features.
(a) Default feature distribution; (b) desired distribution in our method

F I GURE 2 Examples of aligned training images
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The same alignment is used to extract Blur, BRISQUE,
Saturation, and FIIQA quality scores. FaceQnet, SER‐FIQ,
CR‐FIQA, MagFace, and Pose metrics follow the alignment,
which are defined in their public implementations. Eyes
Openness score does not require a specific alignment for
extraction. The selected quality scores are normalised and fed
to the model as additional input for the QualFace loss
function.
For the backbone CNN, we choose the ResNet50V2 [34]

architecture and added a fully connected feature layer with 512
nodes. The default training settings are the following. We ini-
tialised all models with the ImageNet weights before training.
The batch size used was 24 images and decay the learning rate
with cosine annealing scheduler from 5e − 3 in the beginning
to 1e − 5 in the end. The model is trained with SGD optimiser
for six epochs with a momentum parameter of 0.5 and weight
decay of 0.0005.

4.1 | Benchmarking

The performance of face recognition in existence of quality
estimation is usually estimated in a quality aware manner by
rejecting images of insufficient quality from the benchmark
[35]. In this case, different images are rejected for each quality
metric, and the performance is indeed compared on slightly
different one‐to‐one protocols.
We follow another approach by using several fixed one‐to‐

one benchmark protocols for different scenarios. This is also
better from the perspective of employing many different
quality metrics in our work and several experiment of their
joint usage. Such approach allows to better assess the effect of
QualFace and its superiority for ID compliant images. The first
benchmark includes “wild” or non‐constrained images, while
the second one is composed of images compliant to ICAO
standards (named the “Strict” benchmark). The wild bench-
mark dataset was created using the test subset of VGGFace2.
It contains 166k face images of 500 identities. The Strict
dataset was created with images belonging to the Face
Recognition Grand Challenge V2 (FRGC_V2) dataset [36].
Since it includes non‐compliant images, we filtered the dataset
in a semi‐automatic way, choosing only ICAO compliant im-
ages. The final Strict benchmark contains 11.7 k images from
565 identities. For both benchmark datasets, the protocols for
one to one for verification were generated by randomly
selecting image pairs. Each protocol contains around 110 K
pairs for match comparison and 220K pairs for non‐match
comparison (https://github.com/visteam‐isr‐uc/QualFace).
We also adopted the set of LFW benchmarks to our work
(LFW [37], CALFW [38], CPLFW [39], and XQLFW [40]),
which can describe the performance under the variation of
different parameters and give a better understanding of the
investigated effect.
We estimate the performance by the comparison of the

following metrics between the trained models for the bench-
marks: False Non‐Match Rate at False Match Rate
(FNMR@FMR) and Area Under Curve (AUC) of ROC. With

our strategy, we generally expect to achieve the boost of the
performance in the Strict benchmark, sacrificing the perfor-
mance in the Wild benchmark.
To understand the relative quality metric distributions

across the two benchmark datasets, min‐max normalisation
(with respect to the minimum and maximum score values for
the VGGFace2_train) was performed. It can be observed that
the Strict benchmark (see Figure 3b) has better image quality
for the used quality metrics. Also, theWild benchmark dataset
distributions, as expected, are identical to the train dataset
distributions (see Figure 3a).

4.2 | Single‐score experiments

We performed extensive experiments with QualFace and
observed that the strong adaptation (highm1 parameter values)
with our method usually leads to a convergence problem.
However, applying a more careful adaptation, the superiority of
QualFace could be attained. The best results came from the
following configurations: m0 = 0.4 with m1 = 0.05, m1 = 0.1
and m1 = 0.2. For each configuration, we trained a set of
models using a single score: Blur, BRISQUE, FaceQnet,
FIIQA, Pose, SER‐FIQ, Saturation, Eyes openness, CR‐FIQA,
and MagFace. The Receiver Operating Characteristic (ROC)
curves for these models (with m0 = 0.4 and m1 = 0.1), the
baseline ArcFace (with margin m = 0.5, which corresponds to
the mean range of mi for this configuration), and MagFace
(with default parameters) are represented in Figure 4.

(a)

(b)

F I GURE 3 Normalised quality score distributions across the datasets.
(a) VGGFace2_train dataset (identical to VGGFace2_test); (b) Face
Recognition Grand Challenge (FRGC)_V2 test strict dataset
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The presented results (see Tables 1 and 2, Figure 4)
demonstrate that in most of the configurations, the usage of
the QualFace sampling allows to outperform the baseline loss
function performance in the target Strict scenario. Several
configurations of QualFace also outperform the MagFace.
Namely, QualFace can significantly facilitate the accurate face
verification of ICAO compliant face images. This is verified for
most of the models in all configurations; however, the
configuration with m1 = 0.1 demonstrates the most regular
overall result. However, the usage of the strategy is score‐
specific. Various quality metrics require specific hyper‐
parameters settings.
Considering the Wild benchmark, our approach performs

at least on par with ArcFace in most of the cases usually
slightly outperforming the baseline. We conclude that our
method also allows to regularise the training process in more
general manner: not just adapting to qualitative samples but
generally learning better (more qualitative/discriminative) facial
features.
We also observe that the most regular result across con-

figurations for considered scenarios is given by the generic
metrics, like Blur, Face Illumination, Pose, when the deep
metrics, which are based on the face recognition performance,
does not demonstrate comparable results and tend to be sen-
sitive to the hyper‐parameters settings. For instance, it may be

verified for SER‐FIQ and MagFace, which give irregular re-
sults and outperform the baseline only when the weak adap-
tation is applied (see Table 1).

4.3 | Feature distribution

To understand how QualFace impacts the learning process, we
analysed the real feature distribution for several identities in the
benchmark datasets.
To constrain the analysis in the 2D case for visualisation

purposes, we extract the two principal components from the
512 dimensional embeddings with the PCA (Principal
Component Analysis) method.
We perform this analysis on the wild benchmark dataset

(due to larger variability of the quality scores within the class)
as shown in Figure 5.
The real effect on the distribution indeed is not as

straightforward as desired (see Figure 1); however, observa-
tions about the QualFace effect can be made. First, our
method retains the spatial separation between identities, which
is a typical property of margin‐based loss functions. Second, as
expected, QualFace slightly pull high‐quality samples towards
the class centre compacting their distribution, while pushing
lower quality samples away. ArcFace, which does not have
image quality supervision, has a scattered quality distribution
(see Figure 5).

4.4 | Combined scores experiments

After experimenting with sampling by a single score, we
investigated several strategies of scores combination. First, we
analysed the correlation between the used quality metrics to
estimate the redundancy while using scores in a combination.
The resulting correlation matrix is represented in Figure 6. The
correlation value range is [−1, 1], which varies from complete
inverse correlation to complete correlation, while 0 means no
correlation presence.
Some small level of correlation for several score pairs is

expected and observed. The correlation between BRISQUE
and Blur exists since BRISQUE scores also include informa-
tion regarding image blur. Saturation and FIIQA are correlated
since they both deal with the illumination properties. Face-
Qnet, SER‐FIQ, CR‐FIQA, and MagFace are obtained from
the perspective of face recognition task, which leads to their
high coupling. At the same time, those metrics are correlated
with several other generic ones. For the FaceQnet, this is ex-
pected, since it utilises a face quality indicator of ICAO
compliance as the ground‐truth label during the training. For
the SER‐FIQ, this dependency is implicit since it is intrinsically
focussed to capture high‐level face image factors, which are
relevant for the face recognition system.
To perform experiments with combined scores sampling,

we have selected five quality metrics, which represent a sample
from different perspectives and have a low level of correlation:
Blur, BRISQUE, FaceQnet, FIIQA, and Pose.

(a)

(b)

F I GURE 4 Receiver operating characteristic (ROC) curves. (a) Wild
Benchmark; (b) Strict international civil aviation organisation (ICAO)
compliance Benchmark
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Namely, at this stage, we seek for a better strategy of
combining several uncorrelated scores to understand how to
treat face images in multi‐score sampling.
We performed experiments with the mean and median

combined score values. The median implementations use three
scores each: The Median Lower sampling averaged the three
lower scores, the Median model – the three ‘centre’ scores and
the Median Higher averaged the three highest scores, per

sample. We also made experiments with transforming the score
distributions to the uniform distribution before averaging to
equalise their impact. The ROC curves of the combined
models are represented in Figure 7.
The model withMedian Higher averaging demonstrated the

best performance in the benchmarks for all the combined
models. This can be confirmed from the AUC and
FNMR@FMRmetrics, which are represented in Tables 3 and 4.

TABLE 1 FNMR@FMR and area under curve (AUC) values for the various QualFace configurations, Baseline ArcFace, and MagFace forWild and Strict
benchmarks

Wild benchmark Strict benchmark

Method 1e‐2 1e‐3 AUC 1e‐3 1e‐4 1e‐5 AUC

ArcFace (baseline) 0.18483 0.40730 0.975532 0.02486 0.10205 0.19507 0.999871

Mag face 0.20376 0.41549 0.965708 0.01099 0.04362 0.09449 0.999944

QualFace (m0 = 0.4, m1 = 0.05) Blur 0.15703 0.35077 0.979291 0.01049 0.04444 0.14623 0.999943

BRISQUE 0.16631 0.35381 0.978996 0.02656 0.09491 0.18212 0.999876

FaceQnet 0.15814 0.34545 0.979759 0.02562 0.09896 0.26051 0.999866

FIIQA 0.15730 0.34262 0.979431 0.01390 0.08449 0.23264 0.999907

Pose 0.16701 0.34667 0.978542 0.01380 0.06806 0.10515 0.999927

SER‐FIQ 0.16128 0.36441 0.978776 0.01558 0.08406 0.16226 0.999902

Saturation 0.16698 0.35694 0.978076 0.01990 0.08222 0.19853 0.999902

Eyes openness 0.16457 0.35045 0.979593 0.00724 0.03282 0.07619 0.999959

CR‐FIQA 0.15545 0.34798 0.980271 0.01189 0.05439 0.10434 0.999935

MagFace 0.17850 0.39177 0.977441 0.02247 0.08262 0.15150 0.999868

QualFace (m0 = 0.4, m1 = 0.1) Blur 0.15162 0.33566 0.980600 0.00793 0.05453 0.13429 0.999957

BRISQUE 0.16603 0.36687 0.978071 0.02556 0.08950 0.18444 0.999878

FaceQnet 0.16773 0.38094 0.978969 0.01874 0.08284 0.15398 0.999910

FIIQA 0.16782 0.36317 0.978176 0.01066 0.04835 0.10878 0.999936

Pose 0.17413 0.37836 0.976835 0.01805 0.08011 0.14550 0.999917

SER‐FIQ 0.18528 0.40587 0.976898 0.04708 0.14825 0.33822 0.999734

Saturation 0.19192 0.42160 0.975996 0.02426 0.11208 0.27028 0.999869

Eyes openness 0.16698 0.35918 0.978328 0.00961 0.04908 0.11502 0.999958

CR‐FIQA 0.17518 0.37720 0.977633 0.01856 0.07150 0.14453 0.999897

MagFace 0.17621 0.38658 0.977498 0.03651 0.16957 0.42629 0.999802

QualFace (m0 = 0.4, m1 = 0.2) Blur 0.17476 0.39103 0.978118 0.04183 0.13423 0.19618 0.999813

BRISQUE 0.18796 0.42866 0.975520 0.04329 0.21139 0.30880 0.999772

FaceQnet 0.18501 0.41202 0.976702 0.03185 0.05963 0.19958 0.999944

FIIQA 0.19250 0.43931 0.975917 0.04046 0.14946 0.21644 0.999792

Pose 0.18806 0.40735 0.975961 0.01146 0.11058 0.19958 0.999838

SER‐FIQ 0.19519 0.42910 0.975961 0.03531 0.12467 0.22893 0.999778

Saturation 0.18629 0.40323 0.975961 0.02962 0.13005 0.27291 0.999838

Eyes openness 0.18090 0.39833 0.977220 0.04032 0.14621 0.32314 0.999786

CR‐FIQA 0.18715 0.40388 0.975943 0.04169 0.15682 0.29013 0.999734

MagFace 0.18708 0.41124 0.977581 0.02297 0.08210 0.20454 0.999872

Note: Bold numbers indicate the best performance per configuration.

MEDVEDEV ET AL. - 7



We have made several observations regarding the usage of
combined scores. Score uniforming indeed allowed better
regularising the training process and achieving better results.
From the median averaging models, the Median Higher

case has the best results for the document compliant images,
while preserving similar performance for the wild images.
Namely, it means that the QualFace sampling strategy should
be good score biased. In other words, it is better to use a

sample's best scores rather than consider it a bad sample even
if it has few low scores.
Using combined scores did not demonstrate to be a su-

perior choice in any particular benchmark when compared to
the singular score models. However, it allowed achieving a
more regular result across the different scenarios, which can
be useful in applications with unspecified scenarios. By
comparing the Median Higher model with the single‐score

TABLE 2 FNMR@FMR and area under curve (AUC) values for the various QualFace configurations, Baseline ArcFace and MagFace for LFW, CALFW,
CPLFW, and XQLFW benchmarks

LFW CALFW CPLFW XQLFW

Method 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC

ArcFace 0.0480 0.1180 0.9872 0.5336 0.6916 0.9000 0.7153 0.9083 0.8570 0.6356 0.8263 0.8793

MagFace 0.0493 0.1480 0.9866 0.4770 0.7486 0.9103 0.7967 0.9993 0.7783 0.9183 0.9939 0.7540

QualFace (m0 = 0.4, m1 = 0.05) Blur 0.0400 0.0899 0.9895 0.4340 0.8000 0.9163 0.6300 0.8009 0.8736 0.5389 0.7340 0.9021

BRISQUE 0.0426 0.0946 0.9887 0.5263 0.8056 0.9128 0.6420 0.8520 0.8626 0.6013 0.7850 0.8826

FaceQnet 0.0353 0.1103 0.9891 0.4433 0.7043 0.9163 0.6547 0.8373 0.8683 0.5937 0.7903 0.8834

FIIQA 0.0330 0.0887 0.9890 0.5033 0.7326 0.9155 0.6083 0.864 0.8714 0.5543 0.7163 0.8931

Pose 0.0470 0.1187 0.9901 0.4786 0.6833 0.9162 0.6390 0.8156 0.8693 0.6063 0.7680 0.8919

SER‐FIQ 0.0400 0.1213 0.9889 0.5063 0.7806 0.9189 0.6553 0.8156 0.8708 0.5796 0.7283 0.8992

Saturation 0.0380 0.1160 0.9887 0.5290 0.6970 0.9117 0.6737 0.8660 0.8704 0.5860 0.7827 0.8899

Eyes openness 0.0453 0.1159 0.9889 0.5033 0.7053 0.9124 0.6616 0.8036 0.8604 0.5970 0.7603 0.8891

CR‐FIQA 0.0430 0.1113 0.9897 0.5013 0.8487 0.9153 0.6157 0.8210 0.8696 0.5870 0.7083 0.8934

MagFace 0.0483 0.1103 0.9891 0.4990 0.8003 0.9127 0.6830 0.8550 0.8618 0.6360 0.8370 0.8689

QualFace (m0 = 0.4, m1 = 0.1) Blur 0.0370 0.0959 0.9882 0.4573 0.7937 0.9162 0.6337 0.8250 0.8750 0.5740 0.7570 0.8977

BRISQUE 0.0450 0.1296 0.9880 0.5223 0.7250 0.9123 0.6880 0.8326 0.8582 0.6060 0.8080 0.8903

FaceQnet 0.0416 0.0703 0.9886 0.5296 0.7067 0.9133 0.6616 0.8753 0.8681 0.6063 0.7783 0.8816

FIIQA 0.0416 0.0840 0.9896 0.4883 0.6983 0.9151 0.6250 0.7667 0.8633 0.5747 0.7737 0.8820

Pose 0.0396 0.0953 0.9894 0.5403 0.7383 0.9088 0.6760 0.8727 0.8618 0.6330 0.8410 0.8837

SER‐FIQ 0.0440 0.1496 0.9881 0.5730 0.7536 0.9018 0.671 0.838 0.8598 0.5907 0.7633 0.8874

Saturation 0.0430 0.1197 0.9897 0.5713 0.7610 0.9019 0.7030 0.8360 0.8542 0.6387 0.8667 0.8774

Eyes openness 0.0396 0.1129 0.9894 0.5230 0.7470 0.9158 0.6550 0.8367 0.8684 0.6127 0.8230 0.8860

CR‐FIQA 0.0470 0.1077 0.9891 0.4987 0.7637 0.9128 0.6273 0.8437 0.8632 0.6217 0.8080 0.8833

MagFace 0.0440 0.1079 0.9899 0.4923 0.7253 0.9153 0.6370 0.8029 0.8667 0.5827 0.8150 0.8896

QualFace (m0 = 0.4, m1 = 0.2) Blur 0.0410 0.1083 0.9890 0.5416 0.7497 0.9089 0.7216 0.8636 0.8585 0.6177 0.7860 0.8875

BRUSQUE 0.0450 0.1090 0.9890 0.5717 0.7717 0.9019 0.6867 0.8903 0.8592 0.6037 0.7903 0.8795

FaceQnet 0.0373 0.1079 0.9896 0.4983 0.7396 0.9080 0.6550 0.8357 0.8566 0.6357 0.8280 0.8800

FIIQA 0.0520 0.1943 0.9891 0.5633 0.7993 0.9036 0.6797 0.8570 0.8499 0.6353 0.7747 0.8707

Pose 0.0503 0.1009 0.9880 0.5360 0.7220 0.9063 0.7233 0.9017 0.8595 0.6087 0.8023 0.8876

SER‐FIQ 0.0457 0.1186 0.9882 0.5356 0.8063 0.8976 0.7220 0.8700 0.8466 0.5940 0.7717 0.8818

Saturation 0.0430 0.1426 0.9886 0.5726 0.8310 0.9046 0.7050 0.8830 0.8524 0.6230 0.7963 0.8772

Eyes openness 0.0410 0.1220 0.9878 0.5870 0.8167 0.9028 0.6850 0.9023 0.8621 0.6603 0.8247 0.8760

CR‐FIQA 0.0426 0.1473 0.9894 0.5246 0.7840 0.9034 0.6719 0.8443 0.8560 0.6547 0.8197 0.8781

MagFace 0.0406 0.0923 0.9893 0.5546 0.7050 0.9012 0.6793 0.8940 0.8508 0.6403 0.7700 0.8806
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Blur and Face Illumination models, the previous statement
can be verified.

4.5 | Inverted sampling scenario

In order to better understand the nature of our sampling
strategy, we inverted previously used scores (e.g. subtracted 1
and multiplied by − 1) and afterwards QualFace single‐score
models with m0 = 0.4, m1 = 0.1 were trained using these
inverted scores. The training settings were set similarly to ones
in Section 4.2. This strategy is indeed more common for ap-
proaches directed onto unconstrained face recognition where
the impact of hard samples is emphasised.
Intuitively, it is expected that training with the inverted

scores might lead to better performance than the standard
models on theWild benchmark. This is due to harder samples
having higher weight in the training process. However, it is

(a)

(b)

F I GURE 5 Features distribution of two different identities (n004078
and n002475) from the VGGFace2 benchmark dataset with Face
Illumination scores represented in colour. (a) ArcFace Model; (b) Face
Illumination Score QualFace Model with m0 = 0.4 and m1 = 0.1. Orange‐
dotted circle – the approximate area of bad‐quality samples (<0.2). Blue‐
dotted circle – the approximate area of good‐quality samples (>0.8)

F I GURE 6 Correlation matrix for the quality scores extracted from
the VGGFace2 dataset

(a)

(b)

F I GURE 7 Combined model receiver operating characteristic (ROC)
curves. (a) Wild Benchmark; (b) Strict international civil aviation
organisation (ICAO) compliance Benchmark
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expected to underperform in the Strict scenarios since the
models are not as well optimised. The results from this
experiment are represented in Tables 5 and 6.
We analyse the performance difference between the

normal (see Tables 1 and 2), the inverted (see Tables 5 and 6)
score cases and the baseline model. Indeed, results vary across
quality scores; however, several observations can be made.
First, most of the inverted score models (except Blur and CR‐
FIQA) perform better in unconstrained (wild) conditions,
which is the expected result of those experiments.
The inverted generic metrics (Blur, BRISQUE, FIIQA,

Pose, Saturation, and Eyes Openness) lose their performance
benefits in the Strict Benchmark in comparison to the normal
case. Some metrics even under‐perform the baseline model
(especially for the lowest tested threshold of FMR = 1e − 5).
We also observe the improvements of the performance in

the Strict Benchmark for the quality scores, which are trained
on the face recognition performance (FaceQnet, SER‐FIQ,
CR‐FIQA, and MagFace). Recall that these scores demonstrate
high cross correlations. Due to the nature of those quality
metrics, the training of a deep network by default implicitly
tends to generate the desired (see Figure 1) feature distribution.
That is why the additional penalising of the low‐quality sam-
ples consequently also penalises the feature distribution of the
overall class with the high‐quality samples, improving the
performance in the Strict scenario.

4.6 | Extended training

To understand the impact of larger scale datasets with the higher
number of classes and more variable quality sampling, we have

performed a set of experiments on a full VGGFace2 dataset
with the QualFace configuration m0 = 0.4, m1 = 0.1. In these
experiments, we increased the number of epochs to 20 and
changed the learning rate settings, which here start at 1e− 1 and
decrease until 1e − 5. The same batch size and network were
used (only the last layer was replaced with an 8631‐dimensional
layer). The momentum parameter in SGD was set to 0.9.
We trained a set of networks with several quality metrics,

which demonstrated the best performance for the selected
configuration in Section 4.2: Blur, FIIQA, FaceQnet, and Eyes
openness.
From the obtained results (see Tables 7 and 8), we observe

that the performance of all models is clearly superior to the
ones trained on the “cropped” version of the VGGFace2
dataset. The ArcFace and QualFace models outperform all
previous models at all thresholds. This is an expected result
with the increased breadth of the training data.
Also, by comparing the ArcFace model with the QualFace

in the Strict benchmark, the performance gap across all
thresholds is clear. In the strict scenario, the QualFace models
are significantly better than baseline and this effect is more
noticeable than from the results in Section 4.2. It is then
possible to conclude that over larger datasets face variations
and identities, the effects of sample‐specific methods are
enhanced. With the increase in the number of identities to be
represented in the 512‐dimensional feature space, the task of
separating these identities in the hyper‐sphere representation is
more challenging. As such, the effect of the QualFace feature
distribution benefits is much more noticeable. For the Wild
benchmark, the same trend is verified. The QualFace models
also increase performance in the non‐restriction scenario
achieving stronger performance than ArcFace, strengthening

TABLE 3 FNMR@FMR and area under
curve (AUC) scores for two benchmarks using
five scores QualFace models with m0 = 0.4,
m1 = 0.1. Wild and Strict benchmarks

Models

Wild benchmark Strict benchmark

1e‐2 1e‐3 AUC 1e‐3 1e‐4 1e‐5 AUC

Mean 0.16705 0.37935 0.978644 0.02869 0.12879 0.18398 0.999850

Mean (uniformed scores) 0.16480 0.35785 0.979140 0.02171 0.08221 0.18881 0.999897

Median lower 0.16830 0.37824 0.978203 0.02195 0.07807 0.22204 0.999891

Median 0.16729 0.36361 0.979351 0.02087 0.07853 0.21371 0.999905

Median higher 0.15986 0.35767 0.979873 0.01629 0.07027 0.12184 0.999929

Note: Bold numbers indicate the best performance.

TABLE 4 FNMR@FMR and area under curve (AUC) scores for two benchmarks using five scores QualFace models with m0 = 0.4, m1 = 0.1. LWF,
CALFW, CPLFW, and XQLFW benchmarks

Model

LFW CALFW CPLFW XQLFW

1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC

Mean 0.0413 0.1039 0.9882 0.5476 0.7703 0.9150 0.6619 0.8403 0.8665 0.5650 0.832 0.8907

Mean (U.S.) 0.0380 0.0939 0.9888 0.5363 0.8130 0.9108 0.6656 0.8160 0.8645 0.5986 0.8296 0.8890

Median lower 0.0436 0.0916 0.9896 0.5356 0.7476 0.9122 0.6779 0.8360 0.8652 0.5810 0.8053 0.8826

Median 0.0426 0.0926 0.9901 0.5176 0.7416 0.9099 0.6430 0.7667 0.8631 0.5913 0.7760 0.8875

Median higher 0.0443 0.0999 0.9886 0.4736 0.6816 0.9148 0.6240 0.7743 0.8682 0.5870 0.7633 0.8921

10 - MEDVEDEV ET AL.



the claim that the QualFace method produces more discrimi-
native features.

4.7 | Sampling character

Our methodology introduces sample‐specific penalisation in a
linear manner when the various nonlinear cases also pose
research interest. Instead of introducing the non‐linearity into
the methodology, we investigate its effect by modifying the
distribution of the quality score itself, which gives a better
visual representation of the non‐linear impact. With this
interpretation, we indeed just want to find the form of the
score distribution, which is better for practical usage.

Scores are first transformed to default Gaussian distribution
with the quantile transform

�
q0i
�
¼Q

� �
qi
��
. To introduce the

non‐linearity, we apply a sigmoid function to the modified
scores, which is multiplied by the control coefficient α:

q00i ¼ 1=
�
1þ exp

�
− αq0i

��
ð5Þ

With such techniques by varying α, we obtain several
characteristic distribution patterns (see Figure 8), in case of
α = 0, which equalise each sample score to 0.5 that leads to the
result margin (m0 + m1/2) across all the samples (the generic
ArcFace case).
Such a strategy indeed destroys the probability properties

of originally extracted sampling data. However, we neglect this

TABLE 5 FNMR@FMR for the models with m0 = 0.4, m1 = 0.1, trained with inverted scores. Wild and Strict benchmarks

Wild benchmark Strict benchmark

Method 1e‐2 1e‐3 AUC 1e‐3 1e‐4 1e‐5 AUC

ArcFace (baseline) 0.18483 0.40730 0.975532 0.02486 0.10205 0.19507 0.999871

MagFace 0.20376 0.41549 0.965708 0.01099 0.04362 0.09449 0.99994

QualFace (m0 = 0.4, m1 = 0.1) Blur 0.16666 0.36240 0.978831 0.02279 0.08321 0.20641 0.999890

BRISQUE 0.16067 0.35909 0.979462 0.01800 0.07416 0.21906 0.999909

FaceQnet 0.16849 0.37806 0.978761 0.01762 0.08537 0.17598 0.999918

FIIQA 0.15888 0.35184 0.979424 0.01351 0.06568 0.14062 0.999935

Pose 0.16789 0.36928 0.978299 0.02310 0.09207 0.19440 0.999890

SER‐FIQ 0.15981 0.35117 0.979586 0.00757 0.03103 0.07653 0.999959

Saturation 0.16635 0.36030 0.978698 0.01517 0.05905 0.23058 0.999902

Eyes openness 0.16365 0.35296 0.979565 0.01911 0.08163 0.19597 0.999915

CR‐FIQA 0.17097 0.38032 0.978731 0.02135 0.06527 0.11984 0.999876

MagFace 0.16878 0.34644 0.978946 0.00975 0.04872 0.12234 0.999942

TABLE 6 FNMR@FMR for the models with m0 = 0.4, m1 = 0.1, trained with inverted scores. LFW, CALFW, CPLFW, and XQLFW benchmarks

LFW CALFW CPLFW XQLFW

Method 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC

ArcFace (Baseline) 0.0480 0.1180 0.9872 0.5336 0.6916 0.9000 0.7153 0.9083 0.8570 0.6356 0.8263 0.8793

MagFace 0.0493 0.1480 0.9866 0.4770 0.7486 0.9103 0.7967 0.9993 0.7783 0.9183 0.9939 0.7540

QualFace (m0 = 0.4, m1 = 0.1) Blur 0.0393 0.1370 0.9887 0.5416 0.7613 0.9117 0.6603 0.8346 0.8625 0.5703 0.7853 0.8824

BRISQUE 0.0390 0.1257 0.9901 0.5180 0.7707 0.9145 0.6597 0.8373 0.8695 0.5980 0.8410 0.8779

FaceQnet 0.0380 0.0807 0.9888 0.5423 0.7480 0.9165 0.6759 0.8383 0.8622 0.6073 0.7837 0.8849

FIIQA 0.0373 0.1653 0.9896 0.4737 0.7463 0.9133 0.6503 0.7897 0.8713 0.6017 0.7997 0.8945

Pose 0.0400 0.1273 0.9894 0.5143 0.7880 0.9100 0.627 0.8586 0.8711 0.6096 0.7810 0.8849

SER‐FIQ 0.0373 0.0889 0.9884 0.4897 0.8167 0.9135 0.6747 0.8073 0.8605 0.5583 0.7390 0.9005

Saturation 0.0416 0.0829 0.9887 0.5166 0.7563 0.9100 0.6877 0.8363 0.8620 0.5840 0.7863 0.8823

Eyes openness 0.0353 0.0986 0.9887 0.4813 0.6903 0.9213 0.5936 0.8276 0.8692 0.6436 0.7853 0.8794

CR‐FIQA 0.0363 0.0643 0.9905 0.4970 0.7620 0.9147 0.6619 0.8540 0.8662 0.6010 0.8610 0.8883

MagFace 0.0380 0.1193 0.9893 0.4983 0.7480 0.9154 0.6697 0.8380 0.8696 0.5647 0.8283 0.8890
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issue since our target is only to map the quality scores to the
required range according to the order, which is specified by the
original sampling.
We perform our experiments for the Blur score sampling for

a set of values α¼ f0; 1; 5; 10; 16; 22g(Tables 9 and 10). The
Blur quality metrics is chosen since it is the most generic of
image characteristics from our list. Also, it is smoothly distrib-
uted within its range of values and conveniently transformed in
our technique (Equation (5)). The training is performed with
similar settings as in Section 4.6; however, the number of epochs
was reduced from 20 to 10. Our best results are achieved for the
distribution with α = 5 for both of the benchmarks. The stan-
dard deviation of that distribution corresponds to 0.11.
We conclude that for achieving the better performance and

robustness in our strategy, sampling should be performed
carefully in a Gaussian‐like manner and constrained within a
low range of score values.

5 | CONCLUSIONS

In this work, we propose a novel approach of adapting deep
learning face recognition methods for document security ap-
plications. We introduce a sophisticated sample mining strategy
that regularises the training process by careful emphasising the

TABLE 7 FNMR@FMR for ArcFace and the adaptive margin models with m0 = 0.4, m1 = 0.1 for the longer and refined training conditions

Wild benchmark Strict benchmark

Method 1e‐2 1e‐3 1e‐4 AUC 1e‐3 1e‐4 1e‐5 1e‐6 AUC

ArcFace 0.09741 0.20330 0.35757 0.984907 0.00065 0.00350 0.01232 0.05647 0.99999704

MagFace 0.11562 0.23680 0.38473 0.983958 0.00047 0.00440 0.01427 0.01657 0.99999722

QualFace (m0 = 0.4, m1 = 0.1) Blur 0.09025 0.18353 0.33886 0.985778 0.00017 0.00172 0.01117 0.02192 0.99999893

FIIQA 0.08482 0.16534 0.28218 0.986231 0.00010 0.00170 0.00526 0.00658 0.99999927

FaceQnet 0.09404 0.19503 0.32994 0.985260 0.00028 0.00216 0.00575 0.04570 0.99999852

Eyes openness 0.09617 0.19376 0.30802 0.985011 0.00055 0.00423 0.01000 0.01756 0.99999752

Note: Bold numbers indicate the best performance.

TABLE 8 FNMR@FMR for ArcFace and the adaptive margin models with m0 = 0.4, m1 = 0.1 for the longer and refined training conditions. LFW,
CALFW, CPLFW, and XQLFW benchmarks

LFW CALFW CPLFW XQLFW

Method 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC 1e‐2 1e‐3 AUC

ArcFace 0.027 0.042 0.9901 0.2756 0.4686 0.9513 0.4569 0.6406 0.9162 0.4443 0.6446 0.9231

MagFace 0.0290 0.0513 0.9901 0.2813 0.5433 0.9455 0.4916 0.7190 0.9003 0.6623 0.8413 0.8804

QualFace (m0 = 0.4, m1 = 0.1) Blur 0.0246 0.0296 0.9900 0.2353 0.4536 0.9529 0.4356 0.7106 0.9181 0.4513 0.6713 0.9228

FIIQA 0.0240 0.0353 0.9894 0.236 0.3996 0.95353 0.4190 0.5987 0.9209 0.4360 0.5642 0.9281

FaceQnet 0.0256 0.0440 0.9892 0.2763 0.4033 0.9493 0.4296 0.6933 0.9128 0.4609 0.6270 0.9206

Eyes op 0.0253 0.0293 0.9898 0.2493 0.5060 0.94990 0.4356 0.6560 0.9145 0.4780 0.6977 0.9225

F I GURE 8 Transformed Blur score distributions. (a) α = 0, (b) α = 1,
(c) α = 5, (d) α = 10, (e) α = 16 (similar to uniform distribution), and
(f) α = 22
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impact of samples that are better suitable for document se-
curity. The method allows to effectively train face recognition
networks on big wild datasets and at the same time reduce the
effect of “wildness” of these datasets. The extensive experi-
ments with the selected baseline marginal loss function prove
the superiority of adapted models against the default ones in
tests with ID‐compliant images and allow to understand better
the impact of quality sampling. In most of our experiments,
quality sampling allows to retain the performance (or some-
times improve it) in the non‐target, unconstrained (wild)
verification scenario. Namely, it evokes the idea that any type
of sampling can benefit, acting as a stimulus of reordering
samples allowing to generally attain more compact class rep-
resentation in the feature domain. At the same time, the
character of that sampling allows achieving better performance
in the required scenario. The results of our work give some
insights on finding a better sampling strategy. Our strategy
indeed is not only limited to the loss function, which is used in
our experiments but can be adapted to other loss metrics.
However, the straightforward application will require repeating
the ablation study for finding the suitable hyper‐parameters in
each case. That is why, this generalisation performance will be
investigated in further work.
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QualFace blur α = 10 0.0240 0.0376 0.9891 0.2189 0.3646 0.9528 0.4016 0.5613 0.9164 0.4403 0.6576 0.9317

QualFace blur α = 16 0.0253 0.0446 0.9895 0.2136 0.3983 0.9560 0.4060 0.6546 0.9187 0.3863 0.5720 0.9286

QualFace blur α = 22 0.2466 0.0356 0.9894 0.2400 0.3683 0.9536 0.4496 0.6826 0.9155 0.4479 0.6796 0.9269

TABLE 9 FNMR@FMR for the models with m0 = 0.4, m1 = 0.1 with different types of Blur sampling score distributions. Wild and Strict benchmarks

Method

Wild benchmark Strict benchmark

1e‐2 1e‐3 1e‐4 AUC 1e‐3 1e‐4 1e‐5 1e‐6 AUC

ArcFace (~ QualFace blur α = 0) 0.09576 0.19103 0.31089 0.985109 0.000330 0.00249 0.00840 0.01574 0.9999984

QualFace blur α = 1 0.08820 0.17005 0.30286 0.986254 0.000019 0.00045 0.00138 0.00882 0.99999978

QualFace blur α = 5 0.08536 0.16836 0.28994 0.986257 0.000019 0.00022 0.00061 0.00212 0.99999989

QualFace blur α = 10 0.08860 0.17186 0.30164 0.986059 0.000038 0.00098 0.00484 0.00658 0.99999957

QualFace blur α = 16 0.08818 0.17696 0.30743 0.986327 0.000038 0.00042 0.00265 0.00570 0.99999973

QualFace blur α = 22 0.09047 0.17944 0.29422 0.985855 0.000009 0.00041 0.00328 0.00656 0.99999974

Note: Bold numbers indicate the best performance.
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